
DHOOM: Reusing Design-for-Debug Hardware for Online
Monitoring

Neetu Jindal

IIT Delhi

neetu@cse.iitd.ac.in

Sandeep Chandran

IIT Palakkad

sandeepchandran@iitpkd.ac.in

Preeti Ranjan Panda

IIT Delhi

panda@cse.iitd.ac.in

Sanjiva Prasad

IIT Delhi

sanjiva@cse.iitd.ac.in

Abhay Mitra

IIT Delhi

abhaymitra2007@gmail.com

Kunal Singhal

IIT Delhi

knsn1994@gmail.com

Shubham Gupta

IIT Delhi

shubh.dec93@gmail.com

Shikhar Tuli

IIT Delhi

shikhartuli98@gmail.com

ABSTRACT
Runtime verification employs dedicated hardware or software moni-

tors to check whether program properties hold at runtime. However,

these monitors often incur high area and performance overheads de-

pending on whether they are implemented in hardware or software.

In this work, we propose DHOOM, an architectural framework for

runtime monitoring of program assertions, which exploits the com-

bination of a reconfigurable fabric present alongside a processor

core with the vestigial on-chip Design-for-Debug hardware. This

combination of hardware features allows DHOOM to minimize the

overall performance overhead of runtime verification, even when

subject to a given area constraint. We present an algorithm for

dynamically selecting an effective subset of assertion monitors that

can be accommodated in the available programmable fabric, while

instrumenting the remaining assertions in software. We show that

our proposed strategy, while respecting area constraints, reduces

the performance overhead of runtime verification by up to 32%

when compared with a baseline of software-only monitors.

KEYWORDS
Runtime Monitoring, Design-for-Debug Hardware

1 INTRODUCTION
Runtime verification is a lightweight formal verification technique

that monitors only one (current) run, instead of considering all pos-

sible runs, of the system for possible violations of a set of (safety and

invariant) properties specified as assertions [1]. The major factors

contributing to a performance overhead in runtime monitoring are:

(i) instrumentation of the program to generate events for the moni-

tor; and (ii) execution analysis, performed either in lock step with

program execution or post facto. Earlier approaches have reduced

Partly supported by DST-JST project “Security in the IoT Space" and Semiconductor

Research Corporation project 2014-TJ-2528.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00

https://doi.org/10.1145/3316781.3317799

the overhead of instrumentation by using the existing on-chip trac-

ing infrastructure such as ARM CoreSight, and the overhead of

execution analysis by using dedicated hardware features [4]. How-

ever, these solutions are resource intensive, and require fixing at

design time the available hardware resources.
In contrast, we propose and develop an architectural framework

for runtime verification, targeting a feature already being explored

in modern processors such as the Xilinx Zynq (usually for custom

accelerators), namely a reconfigurable fabric adjacent to a core.

The merits of our approach are that it is: (a) resource efficient –
requiring very little space for runtime monitoring; (b) resource
aware – implementing in software those assertions which cannot be

accommodated in the available space on the reconfigurable fabric;

and (c) versatile – working well with general (block-structured)

programs, and where the monitors for assertions are synthesized

at compile time.
We avoid the resource-intensive trace reconstruction step of [1]

by a compile-time mapping of software events which are relevant

to the assertion-monitors to low-level events on execution traces.

Another contribution of our solution is a compile-time O(n2) al-
gorithm (in the number of assertions) to dynamically select an

effective set of assertions to be implemented in the reconfigurable

hardware at different program points, when operating under an

area constraint.

Our monitoring framework DHOOM uses a combination of the

Design-for-Debug (DFD) hardware and the on-chip reconfigurable

fabric attached to a RISC processor to offload the monitor computa-

tion from the main processor. We propose using a slim communica-

tion interface between the processor pipeline and the reconfigurable

fabric by leveraging the trace buffer present in the DFD infrastruc-

ture. Complicated code instrumentation and communication costs

between the processor and the monitors are avoided, with few
architectural changes. The framework integrates with a standard

compiler back-end since the information required for monitoring

the program is limited to the variable-to-register mapping, and the

range of Program Counter (PC) values that delimit the scope of an

assertion.

Figure 1 illustrates the high-level architecture for implement-

ing DHOOM. In RISC architectures, we can continuously moni-

tor assertions related to register-allocated variables at a very fine

granularity, with very low communication overhead, by observ-

ing the destination register values of instructions. This mecha-

nism works efficiently for scoped invariant assertions (of the form

□((L ≤ pc ≤ U) → φ)), not merely assertions at program points.

https://doi.org/10.1145/3316781.3317799

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Jindal et al.

reg, pc

Register
File

Interrupt
Control

Trace
Buffer

Processor

Pipeline

Reconfigurable Fabric

Monitoring
system

reg, pc

Processor Core

Legend
Architectural elements (re)used for runtime verification

Figure 1: High-level schematic of DHOOM.

Moreover, the approach lets us specify program-specific assertions

at compile-time, in contrast with earlier approaches involving hard-

ware monitors, e.g., for embedded systems, where the assertions

had to be fixed at design-time. The framework currently addresses a

structured programming model with the usual control constructs of

sequencing, choice, iteration and function call, including recursion.

The rest of the paper is organized as follows. In §2, we provide a

brief overview of various approaches to runtime monitoring, espe-

cially in hardware. The DHOOM system architecture and work-flow

is presented in §3. Space constraints on the reconfigurable fabric

may not permit all monitors to be realizable in hardware. Accord-

ingly, we present a selection algorithm that picks a maximal subset

of assertions at different program points that can fit in the space

available on the reconfigurable fabric, while minimizing the perfor-

mance overhead (§4). The details of the prototype implementation

of DHOOM, and case-studies highlighting its benefits are discussed

in §5. The example programs are familiar illustrative algorithms

from a data structures course. We conclude in §6 with a discussion

on possible future work.

2 RELATEDWORK
Several works have proposed customizing the architecture to make

it amenable to online runtime verification [14]. Program properties

are usually specified using a temporal logic, and these specifications

are then synthesized into monitoring circuits, usually at design time.

Better performance is at the expense of versatility.

Several other proposals exhibit versatility by exploiting the pres-

ence of multiple cores on chip [7, 15, 18]. Here, the execution results

of one processor core are passed to the monitoring core through

on-chip buffers. These proposals are resource intensive when com-

pared with an unmonitored system.

Other approaches propose using a FPGA to analyze the execu-

tion traces generated by the DFD hardware [1, 4], or monitoring

the pin activity of various devices (on the board) [9]. However,

since execution traces do not contain any information on program

features such as function calls and variable accesses, elaborate trace

reconstruction hardware is used. We avoid such an extensive trace

reconstruction step by translating the scope of each monitor into

PC ranges, and a priori defining program behavior features in terms

of events on execution traces. This helps us process the trace stream

in a resource-efficient manner.

The integration of reconfigurable fabric with the main processor

has been the subject of researchers’ attention to accelerate the main

computation [8, 17]. There are several works that propose using

the reconfigurable fabric for implementing specific monitoring

tasks, and book-keeping functions [5]. Runtime verification for such

processor-FPGA systems was specifically considered in [16] where

the traffic over the system bus was monitored for execution analysis.

Since we can monitor register traffic, we are able to support finer-

grained runtime verification. Our framework also supports selective

implementation of monitors in the presence of other accelerators

on the reconfigurable fabric. Our work also resembles other works

which reuse DFD hardware for various purposes such as security [2]

and additional functional memory [10, 12].

3 OVERVIEW OF DHOOM
3.1 Architecture
Figure 2 shows our proposed DHOOM architecture. In our frame-

work, the processor core and its associated DFD hardware require

no modifications. However, we assume that the updates to the reg-

ister file are available through the instruction trace generated as

suggested in [13]. A standard compiler such as LLVM is used to

compile the source program. The resulting binary is examined to

determine the following information: (i) the scope of assertions in

terms of the PC ranges, and (ii) the variable to register mapping.

The PC ranges thus identified are used by the monitoring system to

configure the DFD hardware such that only execution traces of just

those regions of execution where the specified assertions are active

are stored into the trace buffer for further analysis, using existing

trace conditioning logic [3]. The trace buffer acts as a FIFO where

these execution traces reside before being read by the monitoring

system present on the reconfigurable fabric. It is through the ju-

dicious use of the DFD hardware that we manage to decouple the

processor core from the monitoring system.

Our architecture uses a slim communication interface between

the processor and the monitoring system: It includes the PC, up-

dates to the register file, and a control signal for interrupting the

processor. This communication interface exploits the simplicity of

the RISC architecture, where each instruction uses at most three

operands: two reads and one write. Changes to the system state—

consisting primarily of the register file and memory—are uniquely

identified through the PC of the instruction causing the change.

Another benefit of the RISC architecture is that memory accesses

flow through the register file and are visible to the monitor. The

centrality of the register file in such architectures makes monitor-

ing simple, and aids in fine-grained monitoring. Thus we are able

to continuously monitor scoped invariant properties efficiently.

In scenarios where the resources on DFD hardware such as the

number of event triggers provided is less than the number of PC

ranges to be tracked, wemerge the PC ranges of the active assertions

that are minimally separated. Since the PC ranges of interest to

the monitors are known a priori and do not change during the

lifetime of the application, this guarantees that few unnecessary

execution traces are stored into the trace buffer. The PC ranges are

passed into the reconfigurable fabric along with the register values

so that the monitors can filter out any unnecessary traces. We reuse

the dumping logic associated with the DFD hardware to stall the

processor when the trace buffer is full, and to send its contents to

the reconfigurable fabric. We refrain from using the existing core-

fabric bus to send execution traces to the monitoring system so as

DHOOM: Reusing Design-for-Debug Hardware for Online Monitoring DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

write read

Trace Buffer (TB)

PC dataaddr

128 bits

Trace Buffer Controller

Event Triggers

Execution
Traces

Monitoring
control

Unit
(MCU)

C1

C2

C3

PC ranges

PC, reg_value

C4

Reconfiguration

Interrupt Controller
Interrupt

Processor Core Reconfigurable fabric

Legend Control Lines Data Lines Config Lines

Register
File

Execute

Write Back

Exception

Memory
Access

Fetch

Decode

Register
Access

Core-Fabric Bus

Figure 2: Detailed architecture of DHOOM

Monitoring
Control

Unit
(MCU)

C1

C2

C3

C4

PC

reg_value

Interrupt

PC ranges

enable

mask configs

interrupt
Monitoring System

Legend

Control Lines Data Lines Config Lines

Active Monitor Inactive Monitor

Figure 3: Monitoring system

to not interfere with the functioning of other on-fabric accelerators.

Since not all instructions executed by the processor would update

the variables being monitored, the monitoring system can mostly

keep up with the processor (as shown by our experiments).

Figure 3 shows the internal details of the monitoring system.

Each property to be monitored is implemented as a separate circuit

module (labeled C1 to C4) in the reconfigurable fabric, which raises

an interrupt if a violation is detected. An interrupt mask is used to

either pass an interrupt to the processor, or suppress it, based on

the scope of each assertion. The Monitoring Control Unit (MCU) re-

ceives the program counter and the updated register value from the

trace buffer, and determines the modules that should be activated.

The register value is ignored if it is not relevant to any module.

3.2 DHOOM Flow
We discuss the DHOOM flow through the example listing shown

below. The programmer begins by appropriately annotating the

source code with assertions that are to be monitored.

#ifdef C1
bool goingLeft = false; int parent = -1;

#endif

void preOrder(struct node *root) {
#ifdef C1
assert(((goingLeft) && (root->key <= parent)) ||
((!goingLeft) && (root->key >= parent)))

#endif
if(root != NULL) {
// C1 goes out of scope inside printf()
printf("%d(%d) ", root->key, root->count);

#ifdef C1
goingLeft = true; parent = root->key;

#endif
preOrder(root->left);

#ifdef C1
goingLeft = false; parent = root->key;

#endif
preOrder(root->right); }}

In the above listing, if flag C1 is on, the assertion whether the

Binary Search Tree condition (where the left subchild is less than or

equal to, and the right subchild is greater than or equal to the parent)

is checked, as it traverses the tree when printing the elements in pre-

order. The assertionmonitor comes into scope every time preOrder()

is called, but goes out of scope on entering the printf() function.

The program is first compiled by disabling the macro C1, and the

running time of the resulting binary is measured. Then the run-time

of the binary generated by enabling the macro C1 is measured. The

difference in the run-times gives the “baseline” performance cost

of C1. Next, assertion C1 is translated into VHDL code and then

synthesized to get its area overhead if implemented in hardware.

These overheads are then examined to determine the benefits of

implementing C1 in hardware vis-a-vis in software.

Let us consider a scenario where the monitor C1 is implemented

in hardware. As the program executable obtained after disabling

C1 is loaded on the processor for execution, the DFD hardware is

configured and the reconfigurable fabric of the monitoring plat-

form is simultaneously loaded and initialized with the monitor

for C1. If the verification circuit reports a violation, an interrupt

is generated for the core, which results either in termination of

the program, or initiation of a recovery routine. Assertions within

recursive functions pose no complication provided the variable-to-

register mapping remains unchanged — the monitoring circuits can

be reused across recursive calls because block-structured scoping

rules prevent assertions from simultaneously viewing the state of

local variables/parameters across different recursive function call

instances.

3.3 Design complexities
In processors with complex design elements such as superscalar

issue and out-of-order execution where multiple registers can be

updated simultaneously and registers can hold speculative values

respectively, the MCU would have to maintain the map of archi-

tectural registers along lines similar to those of [16]. The PC of

retiring instructions would then have to be used for verification.

The communication interface in this scenario would require a few

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Jindal et al.

other internal signals to be part of the execution trace, and software

events such as function calls and variable updates to the low-level

events on trace stream would have to be mapped suitably. But

essentially, the DHOOM flow would not change.

4 ASSERTION MAPPING ALGORITHM
Since the reconfigurable fabric is area-limited, we exploit partial

reconfiguration to efficiently “time-share” assertions in hardware.

For example, in Figure 2, a reconfiguration permits C4 to displace

C3. Algorithm 1 (AssertMap) takes the following input parameters:

a set of assertions A; the area cost ci , of mapping an assertion Ai
in hardware, the performance cost bi , when Ai is implemented

in software; and the reconfiguration time (R clock cycles) of the

fabric. It selects a maximal subset of assertions S ⊆ A that should

be mapped to the reconfigurable fabric at different program points

by associating with them a configurationW such that:

•
∑
i ∈W ci ≤ M where M is the maximum allowed area for

implementing assertions in hardware, and

• The total execution time overhead O is minimal, where O =
mR +

∑
i ∈A−S bi , and m is the number of times the fabric

is reconfigured to modify the set of assertions mapped to

hardware.

The above problem is NP-hard, being a general version of the regis-

ter allocation problem, and AssertMap is a simple heuristic. Similar

strategies have been employed in coverage and signal selection al-

gorithms [6, 11].

BB1

BB2
BB3

BB4

A4(5,10)

A5(2,80)

A3(4,400)

A6(5,250)

A1(3,300)

A2

(3,50)

Reconfiguration

A1

A2 A4 A5

A3

A6

Maximum area (M) = 10, Reconfiguration cost (R) = 150

Config2: Cost = 4+5 = 9
Gain = 400+250 = 650

area cost
performance cost Config1: Cost = 3+4+2 = 9

Gain = 300+400+80 = 780

Figure 4: AssertMap Illustration

We maintain a subset S ⊆ A of assertions that will be imple-

mented in hardware, and create Configs consisting of groups of

assertions that represent distinct configurations of the fabric. We

first construct a graph G(V ,E) with nodes representing assertions

and the edge ei j representing the temporal overlap of nodes i and
j. In the for-loop (lines 6-17) of procedure AssertMap we select

the node (assertion v) that maximizes the cycles bv saved if it is

converted to hardware along with its temporal neighbours N that

have been mapped to hardware, with the saving adjusted by R if a

new reconfiguration is required (k = 1 in line 11). The total area

occupied by them together has to be within M . If this node fits

within an existing Config(W) then it is assigned toW , otherwise, a

new configC is generated. It is possible that two or more assertions

can share some logic if implemented in hardware, thereby the area

Algorithm 1 Assertion Mapping Algorithm

1: procedure AssertMap

2: Construct G(V ,E)
3: S = ϕ; V ′ = V
4: while V ′ , ϕ do
5: max = 0;n = ϵ ;W = ϕ;
6: for all v ∈ V ′ do
7: N = {u ∈ S |euv ∈ E}
8: if cv +

∑
q∈N cq > M OR

multiple configs present in N then
9: V ′ = V ′ − {v}
10: else
11: savv = bv − kR
12: (where k = 1 if N = ϕ, else k = 0)

13: if savv ≥ max then
14: max = savv ; n = v ;W = N ;

15: end if
16: end if
17: end for
18: if n , ϵ then
19: S = S ∪ {n}
20: if Config(W) exists AND

cn + area(Config(W)) < M then
21: Assign n to Config(W)

22: else
23: Create new config C
24: Assign n andW to C .
25: end if
26: else
27: return

28: end if
29: V ′ = V ′ − {n}
30: end while
31: end procedure

required to implement them would be less than the sum of individ-

ual areas and possibly result in smaller reconfiguration time. We

use pessimistic estimates to simplify the analysis.

Figure 4 shows an illustration of the algorithm withM = 10 and

a control flow structure with four basic blocks and assertion ranges

as indicated, with assertions annotated with their (ci ,bi) values.
The algorithm begins by constructing the graph G as shown in the

figure. A3 is selected for hardware mapping in the first iteration

of the while-loop because its gain (b3 = 400) is maximum. A new

configuration Config 1 begins.A1 is selected in the second iteration

(b1 = 300), as its combined cost, with A3, is still within the limitM
(c3 + c1 = 3 + 4 ≤ 10). A1 is added to Config 1. A6 is selected in the

next iteration, but cannot be added to Config 1 because the total

area would exceedM (3 + 4 + 5 > M), so a new Config 2 is started,

consisting of A3 and A6. A5 is selected in the next iteration and

added to Config 1. A2 and A4 are not mapped to hardware because

their area cost is too large.

The while-loop iterates a maximum of n times where n is the

number of assertions, and the for-loop iterates over the number of

remaining assertions. The overall complexity isO(n2), with the cost

DHOOM: Reusing Design-for-Debug Hardware for Online Monitoring DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

of computing areav absorbed into the updates performed when

an assertion is mapped to hardware. The above algorithm targets

a general reconfigurable architecture, but is also applicable in the

alternative formulation where a fixed subset out of a given set

of assertions is to be selected for hardware implementation, as a

degenerate case in which only one Config is used.

5 EXPERIMENTS
5.1 Setup
Our experimental setup consists of a single-core LEON3 processor

in which DFD structures such as a trace buffer of size 1KB, trace

conditioning and dumping logic similar to [3], were implemented.

The instruction trace from standard LEON3 captures parameters

such as program counter, opcode, instruction trap and time tag. We

have modified it to capture register addresses, register values and

the PC values instead. Each modified trace message continues to

be 128-bits wide (as in standard LEON3 processor). This modified

LEON3 processor, the monitoring control unit, and all the monitors

were implemented in VHDL, synthesized using Xilinx ISE 14.1,

and downloaded to a Xilinx Virtex 5 board (XC5VLX110T). This

setup is on lines similar to [5]. The application executables were

transferred onto the board and executed through GRMON. The

profiling of the applicationwas carried out through the performance

monitor counters (PMCs) present within the LEON3 core and were

programmed and read using the l3stat module of GRMON.

We emulate reconfiguration by implementing all the monitors

in the Virtex 5 board, and activating/deactivating them as neces-

sary. We count the number of times the ’Config’ identified by our

mapping algorithm changes over the application’s execution, and

add a fixed reconfiguration cost of 100000 cycles towards each such

change. We study the working of the mapping algorithm for dif-

ferent area constraints of 500, 600, and 700 slices available on the

reconfigurable fabric. We demonstrate the benefits of our proposed

scheme through four applications of varying complexity, that cover

several real-world verification scenarios.

5.2 Case Studies
Dijkstra’s shortest path algorithm (DSP): The first application
is an implementation of Dijkstra’s shortest path algorithm, with

assertions such as: (i) edge weights should not be negative and

(ii) the accumulated path cost should be monotonically increasing.

These assertions are checked on each vertex visited during the

execution of the program, and therefore come and go out of scope

frequently. Since these checks are live only at specific program

points, and do not have to save any state between successive calls,

they together occupied less than 500 slices on the reconfigurable

fabric, and hence the MCU only had to activate and deactivate the

assertions based on the PC ranges. However, the large number of

monitors required the event triggers in the DFD hardware to merge

PC ranges. The assertions, when implemented on the reconfigurable

fabric, resulted in an 18% reduction in the execution time of DSP.

We used this application to illustrate the effect of CPU stalls on the

execution time while varying the trace buffer sizes and operating

frequency of reconfigurable fabric (Figure 5). Note that the CPU

stalls occur when the trace buffer is full and the processor waits for

the monitors on the reconfigurable fabric to read the contents of the

trace buffer as the two may be operating at different frequencies.

We observe a reduction in performance improvement from 18% to

12% and 9% when the operating frequency decreases to half and

quarter respectively as the processor core halts more often and for

longer durations. However, the reduction at a particular frequency

is not as severe when the size of the trace buffer increases to 2KB

and 3KB as a larger trace buffer can hold the traces for longer,

thereby resulting in fewer stalls of the processor core.

Core Freq Core Freq / 2 Core Freq / 4
Reconfigurable Fabric Frequency

0

5

10

15

20

25

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

1 KB TB 2 KB TB 3 KB TB

Figure 5: Performance overhead versus hardware features
Binary Search (BS): We considered an implementation of Bi-

nary Search over an input array of 1000 integers, where we monitor

the invariants at each program iteration, together with some “hy-

giene" assertions regarding the binary search tree property and

array boundaries. Figure 6 shows the area cost and performance

overhead of the different applications under consideration. The

overall runtime of the application under each hardware-software

combination of monitors normalized to the runtime of the software-

only implementation is shown with the line associated with each

bar. The overall runtime of the application captures the delay arising

due to stalls as a result of the trace buffer being full, the reconfigu-

ration cost, and the performance overheads due to implementing

some monitors in software. We observe an improvement of 32.5%

when the area for monitors is restricted to 700 slices as compared

with the software-only implementation.

AVL Tree (AVL): We implemented an AVL tree that supports

insertion and deletion of duplicate values. We also implemented

a pre-order traversal over the tree as shown in the listing in Sec-

tion 3. This implementation has some assertions that are common

to all the three operations, and some assertions that are specific

to each function. This presents a case where the set of assertions

that are live at any given point in time depends on the control

path. Moreover, since these assertions have to maintain some state

across function calls, all the monitors do not fit together on the

reconfigurable fabric. Thus, based on the path taken, we have to

reconfigure certain monitors to restrict the overall area overhead

to the specified limits. We observe that two out of five assertions

can be implemented in the reconfigurable fabric when up to 600

slices are available. However, when 700 slices are available, a differ-

ent configuration of assertions is chosen, with ‘A1’ and ‘A5’ being

partially reconfigured at runtime. The benefit of such dynamic re-

configuration is observed from the decrease in the overall runtime

when going from ‘AL2’ to ‘AL3’. The overall runtime overhead for

the application reduces from 33.97% in case of all-software based

monitors, to 18.74% under our proposed scheme.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Jindal et al.

A1 A2 A3 A4

ALL H
W AL1

AL2
AL3 A1 A2 A3 A4 A5

ALL H
W AL1

AL2
AL3 A1

0

200

400

600

800

1000

1200

1400

A
re

a
(N

o.
 o

f s
lic

es
)

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Normalized Performance Cost (S)
Normalized Performance Cost (H)
Normalized Time

BS AVL MST

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 C
os

t /
 T

im
e

Figure 6: Impact of DHOOMarchitecture on area cost and performance overhead (normalized to base systemwith nomonitors).
The bars marked ‘A1’ to ‘A5’ are the number of slices required to implement the monitor in the reconfigurable fabric. The
performance cost of each monitor in both hardware and software is shown with lines above the respective bars. The bars
‘ALLHW’, ‘AL1’, ‘AL2’, and ‘AL3’ show the area cost when all the monitors are implemented in hardware, and the subset of
assertions implemented on the reconfigurable fabric when 500, 600, and 700 slices are available on the reconfigurable fabric.

Minimum Spanning Tree (MST): We considered a program

to compute the MST of an input graph with over 1000 nodes using

Prim's algorithm, monitoring only a single assertion that verifies

that the input graph is connected. The monitor associated with this

check is implemented on the reconfigurable fabric, and can proceed

entirely in parallel to the computation of theMST in software. In this

case, we observe no performance overhead of runtime verification

because themonitor is implemented in hardware. The samemonitor,

if implemented in software, incurs an overhead of 19.5%.

6 CONCLUSION
We proposed and implemented a novel architectural framework

that supports runtime verification of software while incurring min-

imal performance overhead under a given reconfigurable fabric

area constraint. We presented a mapping algorithm that selects a

subset of assertions to be implemented in hardware. We demon-

strated the flexibility and benefits of our proposed scheme through

four case studies that are representative of real-world applications

and libraries. Our experiments reveal that the runtime overhead

incurred due to runtime verification can reduce significantly under

our proposed flow of selectively and judiciously moving assertions

into hardware without exceeding the specified area constraints. In

the future we intend to explore generalizations to monitoring multi-

threaded workloads, context switching, and using more expressive

logics.

REFERENCES
[1] R. Backasch, C. Hochberger, A. Weiss, M. Leucker, and R. Lasslop. 2013. Runtime

Verification for Multicore SoC with High-quality Trace Data. ACM TODAES 18,
2 (2013).

[2] A. Basak, S. Bhunia, and S. Ray. 2016. Exploiting design-for-debug for flexible

SoC security architecture. In DAC. ACM.

[3] S. Chandran, P. R. Panda, S. R. Sarangi, A. Bhattacharyya, D. Chauhan, and S.

Kumar. 2017. Managing Trace Summaries to Minimize Stalls During Postsilicon

Validation. IEEE TVLSI 25, 6 (2017).
[4] N. Decker, P. Gottschling, C. Hochberger, M. Leucker, T. Scheffel, M. Schmitz,

and A. Weiss. 2017. Rapidly Adjustable Non-intrusive Online Monitoring for

Multi-core Systems. In SBMF. Springer.
[5] D. Y Deng, D. Lo, G. Malysa, S. Schneider, and G E. Suh. 2010. Flexible and

efficient instruction-grained run-time monitoring using on-chip reconfigurable

fabric. In MICRO. IEEE.
[6] F. Farahmandi, R. Morad, A. Ziv, Z. Nevo, and P. Mishra. 2017. Cost-effective

analysis of post-silicon functional coverage events. In DATE. IEEE.
[7] P. Fogarty, C. MacNamee, and D. Heffernan. 2013. On-chip support for software

verification and debug in multi-core embedded systems. IET Software 7, 1 (2013).
[8] J. RHauser and J.Wawrzynek. 1997. Garp: AMIPS processorwith a reconfigurable

coprocessor. In IEEE FCCM.

[9] S. Jakšić, E. Bartocci, R. Grosu, R. Kloibhofer, T. Nguyen, and D. Ničkovié. 2015.

From signal temporal logic to FPGA monitors. In MEMOCODE. IEEE.
[10] N. Jindal, P. R. Panda, and S. R Sarangi. 2018. Reusing Trace Buffers as Victim

Caches. IEEE TVLSI 26, 9 (2018).
[11] H. F. Ko and N. Nicolici. 2010. Automated trace signals selection using the RTL

descriptions. In ITC. IEEE.
[12] C. Lai, Y. Yang, and I. Huang. 2014. A Versatile Data Cache for Trace Buffer

Support. IEEE TCSI 61, 11 (2014).
[13] H. Lu and A. Forin. 2008. Automatic processor customization for zero-overhead

online software verification. IEEE TVLSI 16, 10 (2008).
[14] A. Nassar, F. J Kurdahi, and W. Elsharkasy. 2015. NUVA: architectural support

for runtime verification of parametric specifications over multicores. In CASES.
IEEE.

[15] W. Shi, H. S Lee, L. Falk, and M. Ghosh. 2006. An integrated framework for de-

pendable and revivable architectures using multicore processors. ACM SIGARCH
CA News 34, 2.

[16] D. Solet, J. Béchennec, M. Briday, S. Faucou, and S. Pillement. 2016. Hardware

runtime verification of embedded software in SoPC. In SIES. IEEE.
[17] G. Stitt, B. Grattan, J. Villarreal, and F. Vahid. 2002. Using on-chip configurable

logic to reduce embedded system software energy. In FCCM. IEEE.

[18] E. Vlachos, M. L Goodstein, M. A Kozuch, S. Chen, B. Falsafi, P. B Gibbons, and

T. C Mowry. 2010. ParaLog: Enabling and accelerating online parallel monitoring

of multithreaded applications. ACM SIGARCH CA News 38, 1.

